Welcome to My Blog

Welcome to My Blog

Sabtu, 19 November 2011

Cincin Jupiter

Di malam yang cerah, kita memang bisa melihat Jupiter dan satelit-satelitnya berdansa di angkasa. Namun sayangnya keindahan cincin Jupiter tak bisa kita nikmati menggunakan teleskop. Tidak seperti cincin Saturnus memang yang terlihat jelas dari Bumi dengan teleskop kecil sekalipun. Cincin Jupiter memiliki beberapa komponen antara lain cincin halo, cincin utama dan cincin gossamer.

Cincin Halo merupakan bagian terdalam berupa awan tebal yang berada pada jarak 92 000 km – 122 500 km dari inti Jupiter. Bagian halo ini mengalami peningkatan inklinasi akibat interaksi dengan bidang magnet Jupiter. Komponen berikutnya adalah cincin utama yang lebih tipis dan sempit berada pada jarak 122500 km – 128940 km dari pusat Jupiter dengan ketebalan 30 km dari atas ke bawah. Pada bagian ini terdapat juga partikel-partikel besar yang mengisi bagian cincinnya.

Komponen terakhir dari cincin Jupiter adalah cincin Gossamer yang redup dan terbagi atas dua bagian yakni Cincin Almathea (yang dekat ke Jupiter) dan Cincin Thebe. Cincin Almathea dimulai dari satelit Almathea ke bagian dalam Jupiter pada jarak 181000 km dan memiliki kecerlangan seragam. Sedangkan cincin Thebe yang berada di bagian terluar sampai dengan cincin Almathea berada pada jarak 222000 km dari Jupiter. Cincin ini lebih redup namun juga lebih tebal dibanding Cincin Almathea, namun jika dilihat dari citra resolusi tinggi yang diambil oleh Galileo, tepi atas dan bawah cincin Thebe akan terlihat lebih terang dibanding bagian pusatnya.

Cincin Jupiter memang redup jika dibandingkan dengan cincin Saturnus dan ia terbentuk dari materi yang gelap kemerah-merahan. Artinya, materi pembentuk cincin bukanlah es seperti di Saturnus melainkan batuan dan pecahan-pecahan debu. Citra yang diambil Voyager 2 menunjukan partikel pembentuk cincin sangatlah kecil dengan diameter hanya sekitar 10 mikrometer atau kurang dari itu. Bisa dikatakan partikel-partikel dalam cincin itu tak lebih besar dari partikel asap rokok atau debu rumah. Di bagian atas dan bawah cincin, terbentang awan partikel, medan elektrostatis yang terdorong keluar dari cincin oleh medan magnet Jupiter.

Jika dilihat dari letaknya, cincin Jupiter berada dalam batas Roche, sangat dekat dengan planet itu sendiri. Pada area ini satelit yang ada akan hancur akibat gaya gravitasi planet. Ini mengindikasikan kalau cincin Jupiter terbentuk dari satelit yang gagal. Selain itu, hasil pengamatan pesawat ruang angkasa Galileo juga menunjukan debu yang membentuk cincin berasal meteor yang menghantam permukaan satelit Jupiter. Selama 7 tahun perjalanannya, Galileo berhasil mendata ribuan tabrakan partikel dalam cincin Jupiter dari tahun 2002-2003.

Kamis, 17 November 2011

Perjalanan Evolusi Venus

Venus sudah lama dikenal sebagai saudara kembar Bumi. Empat setengah milyar tahun yang lalu, keduanya terbentuk dengan radius, massa, kerapatan, bahkan komposisi kimia yang nyaris sama. Tapi, meskipun kembar dalam banyak hal, tetap saja ada perbedaannya. Venus dan Bumi memiliki iklim yang sangat berbeda satu sama lain.

Analisis data European Venus Express menunjukkan penyebab-penyebab mengapa iklim kedua planet kembar ini sangat berbeda. Pada tahap awal pembentukan tata Surya, Venus sepertinya mengalami evolusi dengan cepat dibanding Bumi.
Data dari Venus Express memang mendukung teori jika saudara kembar Bumi ini pernah memiliki air yang menyelimuti permukaan dalam volume yang signifikan. Tapi, tampaknya lautan ini hilang dalam skala waktu geologi yang sangat singkat. Sebagai akibat dari kehilangan air, evolusi geologi permukaan Venus menjadi lebih lambat karena ia tidak dapat membentuk plat tektonik seperti di Bumi. Dengan demikian evolusi biologi juga tidak terjadi. Jadi, Venus sebagai Bumi yang lain di Tata Surya dalam hal iklim dan kondisi habitasi, ternyata berevolusi terlalu cepat pada awalnya dan kemudian evolusi itu menjadi terlalu lambat.
Di awal kelahiran mereka, Bumi dan Venus memang banyak memiliki kesamaan. Namun dalam perkembangannya, Venus ternyata mengalami kehilangan air yang cukup besar, sedangkan Bumi justru kelihalangan sejumlah besar karbondioksida. Di Bumi, CO2 terkunci dalam mineral pada kerak bumi, di lautan, dan unsur-unsur di dalam tumbuhan. Lepasnya sebagian karbondioksida ke atmosfer inilah yang sekarang kita kenal sebagai pemanasan global, dan menjadi penyebab terjadinya perubahan iklim. Di Venus, sebagian besar CO2 masih berada di atmosfer dan temperatur permukaannya sangat panas, mencapai 450 derajat Celsius. Bayangkan, jika kita ada di permukaan Venus, mungkin kita sudah gosong. Akibat dari banyaknya CO2 di atmosfer, evolusi geologi maupun biologi jadi terhenti. Kondisinya terlalu panas untuk bisa terbentuk kehidupan.
Yang menarik, fisis kedua planet ini ternyata sama, dan Venus Express menempatkan perilaku iklim kedua planet dalam kerangka umum yang bisa kita pahami. Saat ini, pekerjaan Venus Express masih belum berakhir, ia baru akan pensiun setelah bulan Mei 2009. Dan pekerjaan lanjutannya akan dilakukan bekerjasama dengan Jepang, melalui pesawat ruang angkasa Venus Climate Orbitter yang akan tiba di Venus bulan Desember 2010.
Sumber : Royal Astronomical Society

Senin, 14 November 2011

Komet

Komet adalah benda langit yang mengelilingi matahari dengan garis edar berbentuk lonjong atau parabolis atau hiperbolis. Kata "komet" berasal dari bahasa Yunani, yang berarti "rambut panjang". Istilah lainnya adalah bintang berekor yang tidak tidak tepat karena komet sama sekali bukan bintang. Orang Jawa menyebutnya sebagai lintang kemukus karena memiliki ekor seperti buah kemukus yang telah dikeringkan.
Komet terbentuk dari es dan debu.Komet terdiri dari kumpulan debu dan gas yang membeku pada saat berada jauh dari matahari. Ketika mendekati matahari, sebagian bahan penyusun komet menguap membentuk kepala gas dan ekor. Komet juga mengelilingi matahari, sehingga termasuk dalam sistem tata surya. Komet merupakan gas pijar dengan garis edar yang berbeda-beda. Panjang "ekor" komet dapat mencapai jutaan km. Beberapa komet menempuh jarak lebih jauh di luar angkasa daripada planet. Beberapa komet membutuhkan ribuan tahun untuk menyelesaikan satu kali mengorbit matahari.
 Komet mengorbit matahari dalam suatu lintasan yang berbentuk elips
Bagian-Bagian Komet
Bagian-bagian komet terdiri dari inti, koma, awan hidrogen, dan ekor.Bagian-bagian komet sebagai berikut.
Inti, merupakan bahan yang sangat padat, diameternya mencapai beberapa kilometer, dan terbentuk dari penguapan bahan-bahan es penyusun komet, yang kemudian berubah menjadi gas. Koma, merupakan daerah kabut atau daerah yang mirip tabir di sekeliling inti. Lapisan hidrogen, yaitu lapisan yang menyelubungi koma, tidak tampak oleh mata manusia. Diameter awan hidrogen sekitar 20 juta kilometer.
Ekor, yaitu gas bercahaya yang terjadi ketika komet lewat di dekat matahari.
Inti komet adalah sebongkah batu dan salju.Ekor komet arahnya selalu menjauh dari matahari. Bagian ekor suatu komet terdiri dari dua macam, yaitu ekor debu dan ekor gas. Bentuk ekor debu tampak berbentuk lengkungan, sedangkan ekor gas berbentuk lurus. Koma atau ekor komet tercipta saat mendekati matahari yaitu ketika sebagian inti meleleh menjadi gas. Angin matahari kemudian meniup gas tersebut sehingga menyerupai asap yang mengepul ke arah belakang kepala komet. Ekor inilah yang terlihat bersinar dari bumi. Sebuah komet kadang mempunyai satu ekor dan ada yang dua atau lebih.
Jenis-Jenis Komet
Berdasarkan bentuk dan panjang lintasannya, komet dapat diklasifikasikan menjadi dua, yaitu sebagai berikut.
  • Komet berekor panjang, yaitu komet dengan garis lintasannya sangat jauh melalui daerah-daerah yang sangat dingin di angkasa sehingga berkesempatan menyerap gas-gas daerah yang dilaluinya. Ketika mendekati matahari, komet tersebut melepaskan gas sehingga membentuk koma dan ekor yang sangat panjang. Contohnya, komet Kohoutek yang melintas dekat matahari setiap 75.000 tahun sekali dan komet Halley setiap 76 tahun sekali.
  • Komet berekor pendek, yaitu komet dengan garis lintasannya sangat pendek sehingga kurang memiliki kesempatan untuk menyerap gas di daerah yang dilaluinya. Ketika mendekati matahari, komet tersebut melepaskan gas yang sangat sedikit sehingga hanya membentuk koma dan ekor yang sangat pendek bahkan hampir tidak berekor. Contohnya komet Encke yang melintas mendekati matahari setiap 3,3 tahun sekali.
Nama-nama Komet
Sekarang telah dikenal banyak nama komet, antara lain sebagai berikut.
Komet Kohoutek.
Komet Arend-Roland dan Maikos yang muncul pada tahun 1957.
Komet Ikeya-Seki, ditemukan pada bulan September 1965 oleh dua astronom Jepang, yaitu Ikeya dan T. Seki.
Komet Shoemaker-Levy 9 yang hancur pada tahun 1994.
Komet Hyakutake yang muncul pada tahun 1996.
Komet Hale-bopp yang muncul pada tahun 1997 dan lainnya

Minggu, 13 November 2011

Evolusi Bintang

Seperti manusia, bintang juga mengalami perubahan tahap kehidupan. Sebutannya adalah evolusi. Mempelajari evolusi bintang sangat penting bagi manusia, terutama karena kehidupan kita bergantung pada matahari. Matahari sebagai bintang terdekat harus kita kenali sifat-sifatnya lebih jauh.

Dalam mempelajari evolusi bintang, kita tidak bisa mengikutinya sejak kelahiran sampai akhir evolusinya. Usia manusia tidak akan cukup untuk mengamati bintang yang memiliki usia hingga milyaran tahun. Jika demikian tentunya timbul pertanyaan, bagaimana kita bisa menyimpulkan tahap-tahap evolusi sebuah bintang?

Pertanyaan tersebut dapat dijawab dengan kembali menganalogikan bintang dengan manusia. Jumlah manusia di bumi dan bintang di angkasa sangat banyak dengan usia yang berbeda-beda. Kita bisa mengamati kondisi manusia dan bintang yang berada pada usia/tahapan evolusi yang berbeda-beda. Ditambah dengan pemodelan, akhirnya kita bisa menyusun teori evolusi bintang tanpa harus mengamati sebuah bintang sejak kelahiran hingga akhir evolusinya.

Kelahiran bintang
Bintang lahir dari sekumpulan awan gas dan debu yang kita sebut nebula. Ukuran awan ini sangat besar (diameternya mencapai puluhan SA) tetapi kerapatannya sangat rendah. Awal dari pembentukan bintang dimulai ketika ada gangguan gravitasi (misalnya, ada bintang meledak/supernova), maka partikel-partikel dalam nebula tersebut akan bergerak merapat dan memulai interaksi gravitasi di antara mereka setelah sebelumnya tetap dalam keadaan setimbang. Akibatnya, partikel saling bertumbukan dan temperatur naik.

Semakin banyak partikel yang merapat berarti semakin besar gaya gravitasinya dan semakin banyak lagi partikel yang ditarik. Pengerutan awan ini terus berlangsung hingga bagian intinya semakin panas. Panas tersebut dapat mendorong awan di sekitarnya. Hal ini memicu terjadinya proses pembentukan bintang di sekitarnya. Demikian seterusnya hingga terbentuk banyak bintang dalam sebuah awan besar. Maka tidaklah heran jika kita mengamati sekelompok bintang yang lahir pada waktu yang berdekatan di lokasi yang sama. Kelompok bintang inilah yang biasa kita sebut dengan gugus.

Akibat pengerutan oleh gravitasi, temperatur dan tekanan di dalam awan naik sehingga pengerutan melambat. Di tahap ini, bola gas yang terbentuk disebut dengan proto bintang. Apabila massanya kurang dari 0,1 massa Matahari, maka proses pengerutan akan terus terjadi hingga tekanan dari pusat bisa mengimbanginya. Pada saat tercapai kesetimbangan, temperatur di bagian pusat awan itu tidak cukup panas untuk dimulainya proses pembakaran hidrogen. Maksud dari pembakaran di sini adalah reaksi fusi atom hidrogen menjadi helium. Awan ini pun gagal menjadi bintang dan disebut dengan katai gelap.

Jika massanya lebih dari 0,1 massa Matahari, bagian pusat proto bintang memiliki temperatur yang cukup untuk memulai reaksi fusi saat dirinya setimbang. Reaksi ini akan terus terjadi hingga helium yang sudah terbentuk mencapai 10 – 20 % massa bintang. Setelah itu pembakaran akan terhenti, tekanan dari pusat menurun, dan bagian pusat ini runtuh dengan cepat. Akibatnya temperatur inti naik dan bagian luar bintang mengembang. Saat ini, bintang menjadi raksasa dan tahap pembakaran helium menjadi karbon pun dimulai. Di lapisan berikutnya, berlangsung pembakaran hidrogen menjadi helium. Setelah ini kembali akan kita lihat bahwa evolusi bintang sangat bergantung pada massa.

Untuk bintang bermassa kecil (0,1 – 0,5 massa Matahari), proses pembakaran hidrogen dan helium akan terus berlangsung sampai akhirnya bintang itu menjadi katai putih. Sedangkan pada bintang bermassa 0,5 – 6 massa Matahari, pembakaran karbon dimulai setelah helium di inti bintang habis. Proses ini tidaklah stabil, akibatnya bintang berdenyut. Bagian luar bintang mengembang dan mengerut secara periodik sebelum akhirnya terlontar membentuk planetary nebula. Bagian bintang yang tersisa akan mengerut dan membentuk bintang katai putih.

Berikutnya adalah bintang bermassa besar (lebih dari 6 massa Matahari). Di bintang ini pembakaran karbon berlanjut hingga terbentuk neon. Lalu neon pun mengalami fusi membentuk oksigen. Begitu seterusnya hingga secara berturut-turut terbentuk silikon, nikel, dan terakhir besi. Kita bisa lihat di diagram penampang bintang di bawah ini, bahwa reaksi fusi sebelumnya tetap terjadi di luar lapisan inti. Sehingga ada banyak lapisan reaksi fusi yang terbentuk ketika di bagian pusat bintang sedang terbentuk besi.


Evolusi Lanjut

Setelah reaksi yang membentuk besi terhenti, tidak ada proses pembakaran selanjutnya. Akibatnya, tekanan menurun dan bagian inti bintang memampat. Karena begitu padatnya, jarak antara neutroon dan elektron pun mengecil sehingga elektron bergabung dengan neutron dan proton. Peristiwa ini menghasilkan tekanan yang sangat besar dan mengakibatkan bagian luar bintang dilontarkan dengan cepat. Inilah yang disebut dengan supernova.

Apa yang terjadi setelah supernova bergantung pada massa bagian inti bintang yang tadi terbentuk. Apabila di bawah 5 massa Matahari (batas massa Schwarzchild), supernova menyisakan bintang neutron. Disebut demikian karena partikel dalam bintang ini hanya neutron. Bintang neutron biasanya terdeteksi sebagai pulsar (pulsating radio source, sumber gelombang radio yang berputar). Pulsar adalah bintang yang berputar dengan sangat cepat, periodenya hanya dalam orde detik. Putarannya itulah yang menyebabkan pulsasi pancaran gelombang radionya.


Di atas 5 massa Matahari, gaya gravitasi di inti bintang begitu besarnya sehingga dirinya runtuh dan kecepatan lepas partikelnya melebihi kecepatan cahaya. Objek seperti ini disebut dengan lubang hitam. Tidak ada objek yang sanggup lepas dari pengaruh gravitasinya, termasuk cahaya sekalipun. Makanya benda ini disebut lubang hitam, karena tidak memancarkan gelombang elektromagnetik. Satu-satunya cara untuk mendeteksi keberadaan lubang hitam adalah dari interaksi gravitasinya dengan benda-benda di sekitarnya. Pusat galaksi kita adalah salah satu lokasi ditemukannya lubang hitam. Kesimpulan ini diambil karena bintang-bintang di pusat galaksi bergerak dengan sangat cepat, dan kecepatannya itu hanya bisa ditimbulkan oleh gaya gravitasi yang sangat kuat, yaitu oleh sebuah lubang hitam.

Hingga saat ini, pengamatan terhadap bintang-bintang masih terus dilakukan. Teori evolusi bintang di atas bisa saja berubah kalau ada bukti-bukti baru. Tidak ada yang kekal dalam sains, dan tidak ada kebenaran mutlak. Apa yang menjadi kebenaran saat ini bisa saja terbantahkan di kemudian hari. Itulah uniknya sains: dinamis.

Sabtu, 12 November 2011

Komet dan Samudera

Bumi adalah sebuah keajaiban semesta. Pada masa awal tata surya, Matahari berada dalam fase T–Tauri yang dramatis sehingga membuat senyawa–senyawa gampang menguap seperti air, hidrogen, helium, metana, amoniak, nitrogen, karbon monoksida dan karbondioksida terusir dari permukaan planet–planet terestrial bersama sisa gas dan debu yang membentuk tata surya. Fase T–Tauri menyebabkan Matahari meradiasikan angin Matahari jauh lebih intens dan melepaskan panas dengan intensitas lebih besar, sehingga pada orbit Bumi saja suhunya diestimasikan sebesar 2.000° Celcius atau 100 kali lebih panas dibanding sekarang.

Maka menjadi sebuah pertanyaan besar, mengapa kini Bumi demikian berlimpah dengan air? Sebab ganasnya lingkungan tata surya purba pada saat Matahari menjalani fase T–Tauri hanya akan menyisakan senyawa–senyawa silikat saja di Bumi. Sementara air terusir jauh–jauh sampai ke jarak 600 hingga 750 juta km dari Matahari. Dan dibandingkan planet–planet terestrial tetangganya, hanya di Bumi air berada dalam wujud cair dan berlimpah. Sangat berbeda dengan Mars, yang hanya bisa dijumpai adanya jejak–jejak aliran air purba di permukaannya dengan siklus pembasahan sekitar setengah hingga sejuta tahun sekali. Pun demikian Merkurius, dimana air bahkan hanya bisa dijumpai pada kawasan sangat terbatas di kedua kutubnya sebagai bekuan abadi (permafrost).

Darimana air di Bumi berasal menjadi pertanyaan besar yang terus menggayuti benak astronomi. Air diketahui tersedia berlimpah di kawasan pinggiran tata surya, tersimpan sebagai bekuan (es) pada kometisimal–kometisimal yang menghuni awan komet Opik–Oort maupun sabuk Kuiper–Edgeworth. Satu–satunya mekanisme yang memungkinkan mengangkut air dari kawasan ini ke bagian dalam tata surya, khususnya ke planet–planet terestrial dan lebih khusus lagi ke Bumi hanyalah tumbukan benda langit. Dalam hal ini adalah tumbukan komet dengan Bumi. Meski tumbukan komet selalu diikuti pelepasan energi sangat besar yang ditandai munculnya bola api tumbukan bersuhu sangat tinggi, namun distribusi suhunya tidaklah homogen sehingga hanya sebagian kecil saja air dalam komet yang terurai menjadi hidrogen dan oksigen. Sisanya tetap berupa air meski dalam wujud uap. Jejak kawah di Bulan menyajikan bukti telanjang bahwa Bumi purba pernah mengalami periode paling riuh dalam tumbukan dengan komet, yang dikenal sebagai Periode Hantaman Besar. Hantaman Besar berlangsung 4,2–3,8 milyar tahun silam, dengan jumlah tumbukan komet per satuan waktu adalah sangat besar hingga sejuta kali lipat dari nilai sekarang.


Namun komet dari mana yang berperan mengguyurkan air ke Bumi? Kini teka–teki itu mulai sedikit terkuak seiring publikasi hasil observasi terhadap komet Hartley 2 oleh para astronom Eropa yang bersenjatakan teleskop landas bumi Herschel. Komet yang melintas di dekat Bumi pada November 2010 lalu ternyata memiliki sidik jari nyaris identik dengan air di Bumi.

Berbeda dengan observasi in–situ seperti yang dilakukan NASA lewat misi EPOXI (Extrasolar Planet Observation and Deep Impact Extended Investigation) yang bertulangpunggungkan wahana antariksa veteran Deep Impact, observasi Herschel lebih menekankan pada komposisi air khususnya rasio air berat terhadap air ringan (air normal) dalam coma Hartley 2. Air berat merupakan istilah populer bagi D2O, yakni molekul identik air yang atom–atom hidrogennya digantikan oleh atom deuterium, yakni atom hidrogen yang inti atomnya berupa 1 proton + 1 neutron. Sementara air ringan adalah air biasa atau H2O. Rasio antara air berat terhadap air ringan, atau lebih spesifik lagi antara atom deuterium terhadap atom hidrogen, merupakan sidik jari bagi air.

Air di Bumi mengandung 1.558 atom deuterium dalam setiap 10 juta atom hidrogen. Sidik jari ini sangat berbeda dibandingkan air pada enam komet yang telah diobservasi sebelumnya dan diyakini berasal dari awan komet Opik–Oort, salah satunya komet Halley. Air pada komet–komet tersebut mengandung atom deuterium lebih besar yakni 2.960 atom deuterium per 10 juta atom hidrogen. Angka ini nyaris dua kali lipat sidik jari air di Bumi, sehingga jelas air di Bumi tidak berasal dari kometisimal–kometisimal awan komet Opik–Oort.

Yang mengejutkan, justru sidik jari air di meteorit karbon kondritik yang lebih mendekati sidik jari air di Bumi, yakni dengan komposisi sekitar 1.400 atom deuterium dalam setiap 10 juta atom hidrogen. Namun meteorit tipe ini merupakan pecahan asteroid, khususnya asteroid kelas M yang terletak di Sabuk Asteroid Utama. Asteroid M terdistribusi pada jarak antara 300 hingga 600 juta km dari Matahari dengan konsentrasi terbanyak pada jarak sekitar 450 juta km. Meskipun air pada masa tata surya purba, khususnya saat Matahari menjalani fase T–Tauri, berada pada jarak antara 600 hingga 750 juta km dari Matahari sehingga sebagian populasi asteroid M tercakup didalamnya, namun jumlahnya cukup kecil sehingga tidak memungkinkan mencukupi suplai air ke Bumi.


Observasi teleskop landas bumi Herschel dengan memanfaatkan instrumen Heterodyne Instrument for the Far Infrared menyajikan fakta : air di komet Hartley 2 mengandung 1.610 atom deuterium per 10 juta atom hidrogen. Sidik jari ini nyaris identik dengan sidik jari air di Bumi. Dan dengan fakta bahwa komet Hartley 2 berasal dari kometisimal sabuk Kuiper–Edgeworth, maka untuk sementara dapat disimpulkan bahwa air di Bumi memang datang dari kawasan ini. Inilah benang merah itu.

Dengan data terbaru ini maka kita mampu merekonstruksikan datangnya air ke Bumi dengan sedikit lebih baik. Peristiwa tersebut terjadi pada saat Periode Hantaman Besar, yang disebabkan oleh migrasi planet–planet gas. Saturnus, Uranus dan Neptunus purba bergerak lebih menjauh terhadap Matahari dibanding lokasi pembentukannya, sementara Jupiter purba justru sebaliknya yakni lebih mendekat ke Matahari. Migrasi ini menyebabkan planetisimal–planetisimal mini yang berada di antaranya dipaksa hengkang dari lokasi pembentukannya. Sebagian dihentakkan keluar menjauhi Matahari hingga menyusun sabuk Kuiper–Edgeworth. Namun sebagian lainnya dipaksa melesat menuju kawasan tata surya bagian dalam sehingga menghujani planet–planet terestrial.

Pada periode ini, Bumi diperkirakan menerima sedikitnya 70 trilyun ton air, yang memungkinkan untuk menciptakan samudera pertama. Planet–planet terestrial lainnya pun mengalami hal serupa. Hanya saja baik Mars, Venus maupun Merkurius tidaklah seberuntung Bumi sehingga air tak dapat bertahan lama di permukaan planet–planet tersebut

Rabu, 09 November 2011

Bintik Matahari Terbesar Terlihat

Salah satu bintik matahari terbesar dalam beberapa tahun terakhir berhasil ditangkap oleh satelit Solar Dynamics Observatory milik NASA. Bintik matahari itu berhasil ditangkap satelit hari Kamis (3/11/2011).

Bintik matahari tersebut dinamai AR1339. Menurut laporan Spaceweather, ukuran bintik matahari itu mencapai 80.000 kilometer x 40.000 kilometer. Ini sangat besar dan mengalahkan lebar Planet Bumi yang hanya 12.800 km.

AR1339 berada di bagian timur laut permukaan matahari jika dilihat dari citra satelit. Saat ini, AR1339 belum menghadap ke bumi. Saat menghadap bumi beberapa hari ke depan, bintik matahari ini akan mudah diobservasi dengan teleskop matahari.

Bintik matahari pada dasarnya adalah spot gelap di permukaan matahari. Fenomena ini terjadi karena adanya aktivitas magnetik yang menghalangi penghantaran panas di suatu area permukaan matahari. Ini menyebabkan area tersebut lebih dingin sehingga tampak gelap dari sudut pandang manusia di bumi.

Aktivitas magnetik yang intens bisa menimbulkan fenomena lidah api matahari (solar flare) yang melepaskan energi dalam jumlah besar. Lidah api juga diikuti dengan pelepasan partikel energi ke semesta sekitar matahari, disebut dengan lontaran massa korona (coronal mass ejection/CME).
Lontaran massa korona yang sampai ke permukaan bumi dalam intensitas besar bisa menyebabkan kerusakan pembangkit listrik dan tak berfungsinya satelit. Spaceweather memperingatkan bahwa secara alami, AR1339 berpotensi menyebabkan lidah api kelas sedang (M-Class) dalam 24 jam sejak penemuan. National Oceanic and Atmospheric Administration (NOAA) memperkirakan, peluangnya adalah 50 persen.

Lontaran massa korona akibat bintik matahari itu sebenarnya juga telah terjadi pada Rabu lalu, tetapi tidak mengarah ke bumi. Ketika bintik ini mengarah ke bumi beberapa hari ke depan, potensi lontaran massa korona ke bumi akan lebih besar. | Sumber: KOMPAS

Senin, 07 November 2011

Bintang Neutron Yang Ekstrem

Dari sekian banyak bintang di angkasa, ada satu bintang yang menarik perhatian ilmuwan hingga saat ini. Bintang neutron, begitu namnya, menarik perhatian para ilmuwan karena kondisinya yang sangat ekstrem.

Betapa tidak. Bintang yang memiliki diameter hanya sekitar 25 km ini memiliki massa sekitar 1,4 kali massa matahari atau setara dengan setengah juta kali massa bumi. Dengan demikian medan gravitasi di permukaan bintang ini berkisar 200 milyar kali lebih kuat dari medan gravitasi di permukaan bumi.

Medan gravitasi sebesar ini akan mampu meremuk kan benda-benda yang ada dipermukaannya serta atom-atom penyusun benda tersebut. Sebagai gambaran, seseorang yang jatuh ke permukaan bintang neutron akan menabrak permukaannya dengan kecepatan 150.000 km per detik atau energi yang dihasilkan oleh tabrakan tersebut setara dengan 100 megaton ledakan nuklir. Tidak hanya sampai di situ. Sebuah bintang neutron dapat memiliki medan magnetik hingga 100 gigatesla. Medan magnet sebesar itu dapat menghancurkan semua informasi di dalam semua kartu kredit yang ada di atas permukaan bumi, jika bintang neutron diletakkan pada orbit bulan. Sebagai perbandingan, medan magnet bumi hanya berkekuatan sekitar 60 mikrotesla.

Proses Terbentuknya Bintang NetronBintang neutron berawal dari bintang biasa yang sudah kehabisan bahan bakar nuklirnya. Bintang-bintang yang terlihat di malam hari mengalami kesetimbangan antara gaya gravitasi yang berusaha mengerutkan bintang dan gaya-gaya akibat ledakan nuklir yang berusaha membuyarkan materi bintang.

Saat bahan bakarnya habis, gaya gravitasi mulai bekerja dan terjadilah serangkaian reaksi fusi dan fisi nuklir yang diikuti dengan proses supernova, suatu ledakan maha dahsyat yang memancarkan cahaya terang benderang mengalahkan seluruh cahaya yang ada di galaksi tempat bintang bermukim.

Cahaya ini muncul dari pelepasan energi akibat penurunan drastis massa bintang (hukun kekekalan energi, E=mc2). Diyakini bahwa bintang netron berasal dari bintang berukuran 15 hingga 30 kali matahari (meski demikian, angka ini terus berubah dengan meningkatnya akurasi simulasi supernova). Bintang yang lebih berat akan menjadi lubang hitam (black hole) sedangkan bintang yang lebih ringan akan berakhir sebagai kerdil putih (white dwarf) jika mereka mengalami proses serupa. Di samping itu, hukum kekekalan momentum akan menaikkan rotasi bintang secara drastis, suatu penjelasan mengapa bintang neutron dapat berotasi hingga 600 putaran per detik.

Dari informasi energi ikat nuklir diketahui bahwa reaksi fusi yang terjadi akan berhenti jika material bintang telah menjadi besi. Dengan demikian terjadi penumpukan besi hingga massa bintang neutron menjadi 1,4 kali massa matahari. Setelah mencapai fase ini gaya degenerasi elektron yang selama ini mampu melawan gaya pengerutan gravitasi mulai menyerah. Tekanan gravitasi yang sangat kuat akan memicu proses URCA, yaitu proses penggabungan proton dan elektron menjadi netron dan neutrino. Karena neutrino sangat halus, diyakini ia berinteraksi sedikit sekali dengan material bintang dan, setelah membantu terjadinya proses supernova, neutrino akan pergi. Tinggalah netron yang selanjutnya membentuk bintang neutron.

Minggu, 06 November 2011

Badai Matahari

Badai matahari adalah ledakan besar di atmosfer Matahari yang dapat melepaskan energi sebesar 6 × 1025 joule. Istilah ini juga digunakan untuk fenomena yang mirip di bintang lain.

Badai matahari mempengaruhi semua lapisan atmosfer matahari (fotosfer, korona dan kromosfer). Kebanyakan badai terjadi di wilayah aktif disekitar bintik matahari.

Sinar X dan radiasi ultraviolet yang dikeluarkan oleh badai matahari dapat mempengaruhi ionosfer Bumi dan mengganggu komunikasi radio.

Badai matahari pertama kali diobservasi oleh Richard Christopher Carrington tahun 1859. Sebagian orang mungkin sudah tahu informasi tentang akan adanya badai matahari atau CME (Corona Mass Ejection) pada tahun 2012 nanti. Kata Dr. Thomas Djamaluddin badai matahari tersebut tidak menyebabkan kiamat, namun tetap berdampak pada benda astronomi di sekitarnya. Badai matahari berdampak tidak langsung terhadap manusia, dampaknya adalah terganggunya sinyal radio sehingga menyebabkan jaringan komunikasi menjadi rusak, jelek, atau tidak berfungsi.

Badai matahari baru menjadi persoalan jika ledakannya mengarah ke bumi. Bukan hanya satelit yang mengangkasa di orbit bumi yang terganggu. Bumi pun mengalaminya.

Saat ledakan matahari mengarah ke bumi, partikel berenergi tinggi yang ikut terlontar menyusup masuk bumi mengikuti arah medan magnet bumi dari kutub utara dan menyebar memasuki atmosfer. Insiden itu pernah dilaporkan pada saat siklus 22 pada 1989. Kala itu transformator (trafo) pembangkit listrik di Quebec, Kanada, terbakar dan sesaat kemudian listrik yang memasok kebutuhan 6 juta penduduk di sana padam selama 9 jam.

Tidak hanya itu saja bahkan penerbangan dan pelayaran yang mengandalkan satelit GPS sebagai sistem navigasi hendaknya menggunakan sistem manual ketika badai antariksa terjadi, dalam memandu tinggal landas atau pendaratan pesawat terbang. Ternyata banyak juga pengaruh yang bisa ditimbulkan oleh badai matahari. Jadi yang paling dikhawatirkan oleh pemerintah mau pun para ahli dari badai matahari itu sebenarnya terganggunya frekuensi radio. Kalau untuk orang awam, tentunya badai matahari dianggap sebagai api neraka yang akan hadir di bumi dan akan membumihanguskan bumi beserta isinya menjadi abu. Siapa yang tidak takut? Mungkin ada sebagian yang tidak takut tapi tetap saja ini meresahkan.

Sabtu, 05 November 2011

Asteroid 2055 YU55 Closed to The Earth

2005 YU55, also written as 2005 YU55, is a potentially hazardous asteroid that is 400 meters in diameter.It was discovered on 28 December 2005 by Robert S. McMillan at Steward Observatory, Kitt Peak.The 2011 approach is the closest known by an asteroid with an absolute magnitude this bright since 2010 XC15 (H = 21.4) approached within 0.5 lunar distances in 1976.

Impact risk assessment

In February 2010 it was rated 1 on the Torino Scale, indicating that a pass near the Earth is predicted that poses no unusual level of danger. On 19 April 2010, highly accurate radar targeting by the Arecibo radio telescope reduced uncertainties about the orbit by 50 percent.This improvement eliminated any possibility of an impact with the Earth for the next 100 years.It was removed from the Sentry Risk Table on 22 April 2010 and and as such it now has a rating of 0 on the Torino Scale.

On 8 November 2011 at 23:28 UT, the asteroid will safely pass within 0.85 lunar distances of the Earth. A lunar distance of 0.85 is also 0.00217 AU (325,000 km; 202,000 mi).On 9 November 2011 at 07:13 UT, the asteroid will pass 0.00160 AU (239,000 km; 149,000 mi) from the moon.During the close approach, the asteroid should reach about apparent magnitude 11, and may be visible to expert observers using high-end binoculars with an objective lens of 80mm or larger. Since the gibbous moon will interfere with the viewing, amateur observers trying to visually locate the asteroid will require a telescope with an aperture of 6 inches (15 centimeters) or larger.

The next time a known asteroid this large will come this close to Earth will be in 2028 when (153814) 2001 WN5 passes 0.00166 AU (248,000 km; 154,000 mi) from the Earth.

Future trajectory

On 19 January 2029, 2005 YU55 will pass about 0.0019 AU (280,000 km; 180,000 mi) from Venus. The close approach to Venus in 2029 will determine how close the asteroid will pass the Earth in 2041. The uncertainties in the post-2029 trajectory will cause the asteroid to pass anywhere from 0.002 AU (300,000 km; 190,000 mi) and 0.3 AU from the Earth in 2041.Radar astrometry in November 2011 should clarify the Earth encounter situation in 2041 and bey

Senin, 31 Oktober 2011

Mars Pada Masa Lalu



Banyak ilmuwan memperkirakan bahwa Mars, planet yang saat ini dingin dan sangat kering, dulunya memiliki samudera yang penuh air di permukaannya. Namun demikian, bukan berarti planet tersebut sebelumnya merupakan kawasan tropik.

Dari laporan yang dipublikasikan di jurnal Nature Geoscience, astrobiolog Alberto Fairyn dan rekan-rekannya dari SETI Institute and NASA Ames Research Center menyebutkan bahwa Mars lebih buruk dari perkiraan.

Absennya phyllosilicate di kawasan dataran rendah di bagian utara planet Mars mengindikasikan bahwa samudera yang pernah ada di sana merupakan samudera dingin, dan kemungkinan berbatasan dengan gletser yang membeku.

Dikutip dari Universe Today, 4 September 2011, phyllosilicate atau lapisan silicate merupakan kelompok mineral yang penting, termasuk mica, chlorite, serpentine, talc, dan mineral lumpur. Di planet Bumi, zat tersebut umumnya ditemukan di sedimen bebatuan yang terbentuk akibat adanya laut.

Meski di kawasan utara tidak dijumpai, lewat spectrometer yang dipasang di pesawat ruang angkasa, mineral itu sendiri ditemukan di kawasan khatulistiwa planet Mars.

Tertarik dengan jauhnya perbedaan mineral yang ditemukan di Mars, Fairyn dan timnya melakukan studi lebih lanjut. Menggunakan model geokimia dan klimatik baru, disimpulkan bahwa samudera di kawasan utara planet itu kemungkinan nyaris beku, dengan sebagian besar di antaranya diselimuti es.

Studi yang dilakukan oleh Fairyn dan rekan-rekannya berbeda, namun lebih tepatnya, menggabungkan dua teori sebelumnya seputar masa lalu planet Mars. Teori pertama, planet itu dingin namun kering dan hadirnya air di planet Mars hanya sesaat, tepatnya di kawasan khatulistiwa.

Teori kedua, planet itu pernah memiliki iklim hangat dan basah serta memiliki sungai, danau, dan laut selama periode yang cukup panjang. Namun, temuan baru ini menunjukkan bahwa Mars dahulu kala dingin, namun memiliki samudera yang serupa dengan kutub utara Bumi.

Fairyn menyebutkan, penelitian lebih lanjut sedang dipersiapkan, termasuk menjalankan tes menggunakan model temperatur yang lebih rendah serta mencari kawasan pesisir yang kemungkinan terkena dampak adanya gunung es.

Langkah ini memang akan sangat sulit karena sebagian besar bukti dipastikan terkubur oleh sedimen baru dan muntahan volkanik. Namun demikian, Fairyn yakin bahwa model yang ia buat akan mampu menuntaskan perdebatan panjang seputar sejarah planet merah itu.

Minggu, 30 Oktober 2011

Gerhana bulan

Gerhana bulan terjadi saat sebagian atau keseluruhan penampang bulan tertutup oleh bayangan bumi. Itu terjadi bila bumi berada di antara matahari dan bulan pada satu garis lurus yang sama, sehingga sinar matahari tidak dapat mencapai bulan karena terhalangi oleh bumi.

Dengan penjelasan lain, gerhana bulan muncul bila bulan sedang beroposisi dengan matahari. Tetapi karena kemiringan bidang orbit bulan terhadap bidang ekliptika, maka tidak setiap oposisi bulan dengan matahari akan mengakibatkan terjadinya gerhana bulan. Perpotongan bidang orbit bulan dengan bidang ekliptika akan memunculkan 2 buah titik potong yang disebut node, yaitu titik di mana bulan memotong bidang ekliptika. Gerhana bulan ini akan terjadi saat bulan beroposisi pada node tersebut. Bulan membutuhkan waktu 29,53 hari untuk bergerak dari satu titik oposisi ke titik oposisi lainnya. Maka seharusnya, jika terjadi gerhana bulan, akan diikuti dengan gerhana matahari karena kedua node tersebut terletak pada garis yang menghubungkan antara matahari dengan bumi.

Sebenarnya, pada peristiwa gerhana bulan, seringkali bulan masih dapat terlihat. Ini dikarenakan masih adanya sinar matahari yang dibelokkan ke arah bulan oleh atmosfer bumi. Dan kebanyakan sinar yang dibelokkan ini memiliki spektrum cahaya merah. Itulah sebabnya pada saat gerhana bulan, bulan akan tampak berwarna gelap, bisa berwarna merah tembaga, jingga, ataupun coklat.

Gerhana bulan dapat diamati dengan mata telanjang dan tidak berbahaya sama sekali.

Ketika gerhana bulan sedang berlangsung, umat Islam yang melihat atau mengetahui gerhana tersebut disunnahkan untuk melakukan salat gerhana bulan (salat khusuf).

Jenis-jenis gerhana bulan
1. Gerhana bulan total
Pada gerhana ini, bulan akan tepat berada pada daerah umbra.
2. Gerhana bulan sebagian
Pada gerhana ini, tidak seluruh bagian bulan terhalangi dari matahari oleh bumi. Sedangkan sebagian permukaan bulan yang lain berada di daerah penumbra. Sehingga masih ada sebagian sinar matahari yang sampai ke permukaan bulan.
3. Gerhana bulan penumbra
Pada gerhana ini, seluruh bagian bulan berada di bagian penumbra. Sehingga bulan masih dapat terlihat dengan warna yang suram.

Sabtu, 29 Oktober 2011

Tabrakan Nibiru

Tabrakan Nibiru adalah pertemuan Bumi dengan planet besar (baik berupa tabrakan maupun hampir menabrak) yang dipercaya akan terjadi pada awal abad ke-21. Penganut peristiwa ini menyebut obyek yang mendekati Bumi itu sebagai Planet X atau Nibiru.
Ide ini pertama kali diusulkan oleh Nancy Lieder tahun 1995. Lieder menyatakan dapat menerima pesan dari makhluk ekstraterestrial dari sistem Zeta Reticuli. Ia memperingati manusia bahwa benda tersebut akan melewati tata surya pada Mei 2003 (nantinya diubah menjadi 2010), menyebabkan pergeseran kutub bumi yang akan menghancurkan peradaban umat manusia. Ramalan tabrakan ini menyebar di luar situs Lieder, dan dipercaya oleh grup-grup yang menghubungkan tabrakan Nibiru dengan ramalan kiamat 2012. Meskipun nama "Nibiru" berasal dari karya Zecharia Sitchin mengenai astronot kuno, Sitchin sendiri membantah hubungan antara karyanya dengan bencana yang akan datang.
Usul bahwa obyek sebesar planet akan menabrak bumi di masa depan tidak didukung oleh bukti ilmiah dan dianggap sebagai ilmu semu. Namun, ketakutan akan tabrakan Nibiru menyebabkan kepanikan pada publik.

V838 Mon, bintang yang diduga sebagai Nibiru

Rabu, 10 Agustus 2011

Misteri Lubang Hitam di Luar Angkasa

http://upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Black_Hole_Milkyway.jpg/329px-Black_Hole_Milkyway.jpg
MISTERI lubang hitam yang bertebaran di angkasa lepas dikatakan menyamai konsep kejadian aneh yang terjadi di Segitiga Bermuda, apabila kapal atau kapal terbang yang melintasi kawasan perairan itu raib secara tiba-tiba.
Bagaimanapun, lubang hitam seumpama lubang gergasi, ukurannya lebih luas daripada matahari serta langit di angkasa menyedot apa saja yang mendekatinya termasuk planet. Malah kekuatan tarikannya menyebabkan cahaya yang tidak memilik kekuatan juga tidak mampu melepaskan diri.
Misteri yang menyelubungi kejadian lubang hitam itu bagaimanapun hanya mampu dikaji dari jauh lantaran kemampuan sains dan teknologi manusia nyata masih belum mampu membawa mereka menghampiri lubang itu.
Menggunakan teleskop dan pengamatan terhadap bintang yang disesuaikan pula dengan berbagai hukum fisik yang berada sekitar bumi, berbagai teori dikemukakan bagi mengisi kekosongan pada ruangan jawaban yang dicetuskan misteri alam itu.
Teori ini dipakai ahli astronomi adalah teori yang sama digunakan alat penyedot gas hampa – kekuatan lubang hitam terjadi berikutan tarikan gravitasi dalam lubang itu adalah kuat berbanding dengan tarikan sekelilingnya. Justru, apa saja yang menghampirinya akan disedot.
Bagaimanapun, kekuatan gravitasinya ‘luar biasa’ dan amat dahsyat. Dikatakan jika kekuatan gravitasi itu wujud di bumi, ia akan menjadikan ukuran  planet ini menjadi sekecil bola yang berjejari sekitar satu sentimeter.
Teori lobang hitam sebenarnya dikemukakan lebih 200 tahun lalu. Pada 1783, ilmuwan Barat, John Mitchell mencetuskan teori mengenai kemungkinan wujudnya lubang hitam selepas beliau meneliti teori graviti Isaac Newton.
Beliau berpendapat jika objek yang dilemparkan tegak lurus ke atas akan terlepas dari pengaruh gravitasi bumi selepas mencapai kejahuan lebih 11 kilometer perdetik, maka tentu ada planet atau bintang lain yang memiliki gravitasi lebih besar daripada bumi.
Bagaimanapun, perkataan ‘lubang hitam’ pertama kali digunakan ahli fisika Amerika Syarikat, John Archibald Wheeler pada 1968. Wheeler memberi nama tersebut  karena lubang hitam tidak dapat dilihat, cahaya turut ditarik ke dalamnya sehingga kawasan sekitarnya menjadi gelap.
Menurut teori evolusi bintang, asal lubang hitam adalah sejenis bintang biru yang memiliki suhu permukaan melebihi 25,000 darajat Celcius. Ketika pembakaran hidrogen di bintang biru yang memakan waktu kira-kira 10 juta tahun selesai, ia menjadi bintang biru raksasa.
Kemudian, bintang itu menjadi dingin dan bertukar kepada bintang merah raksasa. Dalam fase itulah, akibat tarikan gravitasinya sendiri, bintang merah raksasa mengalami ledakan dahsyat atau disebut Supernova dan menghasilkan dua jenis bintang iaitu bintang Netron dan lubang hitam.
Pengamatan dari teleskop sinar-X ruang angkasa selama lebih dari satu dekade, menunjukkan kekuatan tarikan gravitasi lubang itu menyebabkan ada bintang yang hancur dan ditelan olehnya.
Sebelum ini, ahli astronomi sudah melihat bagaimana lubang hitam menyedot gas yang berterbangan di sekitarnya. Gas yang disedot itu menjadi panas sehingga memancarkan radiasi dalam berbagai panjang gelombang, mulai daripada gelombang radio hingga gelombang cahaya tampak dan sinar-X.
Berdasarkan pengamatan, ahli astronomi dari Max Planck Institute for Extraterrestrial Physics, Jerman, pernah melihat sebuah bintang yang mendekati lubang hitam raksasa akhirnya lhilang ditelan lubang itu.
Lubang hitam raksasa yang dilihat itu berada di pusat galaksi RX J1242-11 yang jaraknya dianggarkan 700 juta tahun cahaya dari bumi. Bintang yang disedut lubang hitam itu pula memiliki ukuran sebesar matahari sistem tata surya kita.
Bintang itu hancur sedikit demi sedikit dan disedot ke dalam lubang itu selama beberapa hari. Pada peringkat awalnya, bintang itu kehilangan gas yang berada di sekelilingnya.
Selepas itu, bintang itu menjadi panas hingga jutaan darajat Celcius dan hilang ditelan lubang hitam. Dalam proses itu, ia melepaskan tenaga yang kuat iaitu setara dengan tenaga yang dihasilkan pada ledakan Supernova.
Ahli astronomi mengesan kedudukan lubang hitam dengan memperhatikan cahaya di sekitar bintang ataupun gas di angkasa. Apabila di suatu tempat itu tidak ditemui cahaya tetapi di sekitarnya terdapat banyak objek angkasa menuju ke satu titik dengan kecepatan tinggi sebelum hilang, maka titik tersebut ditandakan sebagai lubang hitam.
Terdapat banyak lubang hitam di seluruh semesta malah ada teori yang mengatakan di galaksi Bima Sakti ini juga terdapat sebuah lubang hitam. Justru timbul persoalan sama, apakah  matahari dan planet yang mengelilinginya termasuk bumi akan disedut lubang hitam itu?
Ahli astronomi memberikan jawaban, ‘tidak’ karena berbanding galaksi lain, lubang hitam di Bima Sakti dikatakan dalam keadaan tenang disebabkan sedikit saja objek sekitar yang disedotnya.
Misteri yang menyelubungi lubang hitam akan terus menarik minat ahli astronomi sehingga  satu jawaban yang benar diperoleh. Selagi manusia belum mampu menjelajah jauh ke luar angkasa, saat itu pula jawapbn itu gagal diperoleh dan berbagai teori tanpa bukti akan terus dikemukakan bagi ‘menyelesaikan’ misteri alam itu.
Fakta: Lubang Hitam
Dikenal sebagai ‘bintang hitam’ dan ‘singularitas’.
Ditemukan  pada 1783 oleh John Mitchell.
Luasnya melebihi ukuran matahari.
Menyedot apa saja di sekelilingnya termasuk bintang dan cahaya.
Teori sedotan akibat tarikan gravitasi di lubang hitam lebih kuat dari kawasan sekitarnya.
Teori menyatakan ia terjadi  akibat letusan Supernova bintang merah raksasa.

Selasa, 09 Agustus 2011

Jenis Ledakan baru Bintang

detail berita
Ilustrasi (gambar: blogspot)
CALIFORNIA - Ilmuwan umumkan sebuah jenis baru ledakan bintang atau Supernova, setelah meneliti enam ledakan sangat terang dari sebuah bintang tua di luar angkasa.

Ledakan tersebut 10 kali lebih terang dari supernova biasa membentuk awan yang nantinya merupakan cikal bakal galaksi primitif, memungkinkan para ilmuwan untuk meneliti proses terbentuknya sebuah galaksi. Demikian seperti yang dikutip dari redOrbit, Jumat (10/6/2011).

"Kami meneliti sebuah jenis baru supernova yang belum pernah diketahui sebelumnya," ujar Robert Quimby, peneliti dari California Institute of Technology.

"Yang kami ketahui sampai saat ini adalah ukuran ledakannya yang sangat terang dan panas, sekira 10 ribu sampai 20 ribu derajat Kelvin. Penyebarannya pun mencapai 10 ribu kilometer per detik," ungkapnya.

Selain itu Quimby juga mengatakan bahwa ledakan supernova jenis baru tersebut juga memiliki kadar hydrogen yang rendah. Membutuhkan sekira 50 hari agar efek dari ledakan tersebut untuk menghilang.

"Jadi pasti ada faktor yang menyebabkan mengapa ledakan supernova tersebut bisa menjadi sangat besar," kata Quimby.

Sementara itu, ahli astronomi asal Perancis, Francoise Combes, menulis bahwa supernova jenis baru ini sangat menarik, karena cahayanya bersinar 10 kali lebih terang dari pada yang lain.

Quimby memulai penelitian ini pada tahun 2005, ketika ia meneliti sebuah supernova bernama SN 2005ap yang cahayanya 100 miliar kali lebih terang dari matahari, dan dua kali lebih terang dari ledakan supernova biasa.

Penemuan ini pertama kali dipublikasikan pada 8 Juni 2011 di jurnal Nature.
(ATA)

Senin, 08 Agustus 2011

Penemuan Bintang Terdingin

Bagaimana rasanya berada dekat Matahari? Tentu kita akan menjawab, panas, sampai bisa hangus, deh. Tentu saja, karena suhu permukaan Matahari sendiri 6.000 K. Kali ini, justru ditemukan bintang baru yang sangat dingin, hanya 632 K atau sekitar 350 derajat Celsius. Penemuan bintang yang satu ini memang tidak spektakuler seperti menemukan supernova, namun tetap memberikan banyak informasi dan kaitan antara bintang dan planet khususnya planet raksasa (planet gas). Bintang terdingin yang ditemukan ini adalah sebuah bintang katai cokelat atau yang lebih kita kenal sebagai bintang gagal.
Katai Coklat, bintang yang gagal. Kredit gambar : Hallinan et al. NRAO/AUI/NSF
Penemuan ini didapatkan oleh tim astronom dari Prancis dan Canada dengan menggunakan Canada France Hawaii Telescope (CFHT) dan Gemini North Telescope, yang keduanya terletak di Hawaii, serta menggunakan ESO/NTT di Chile. Bintang katai coklat yang diberi nama CFBDS J005910.83-011401.3 (dan akan disebut dengan nama CFBDS0059), memiliki massa hanya sekitar 15 – 30 kali massa Jupiter, planet terbesar di Tata Surya. Bintang CFBDS0059 terletak pada jarak 40 tahun cahaya dari Tata Surya, dan merupakan objek yang terisolasi. Artinya, bintang ini tidak mengorbit bintang lainnya.
Katai cokelat merupakan objek pertengahan antara bintang dan planet raksasa, dengan massa rata-rata kurang dari 70 massa Jupiter. Nah, karena massanya yang kecil ini, temperatur pusatnya juga tidak cukup tinggi untuk bisa mempertahankan reaksi fusi termonuklir dalam jangka waktu yang panjang. Berbeda sekali dengan bintang seperti Matahari, yang justru menghabiskan seluruh waktu hidupnya untuk membakar hidrogen, sehingga dari proses itu, Matahari bisa menjaga temperatur internalnya agar tetap konstan. Katai cokelat justru akan semakin dingin dan dingin sepanjang hidupnya setelah ia terbentuk.
Perbandingan ukuran bintang dan planet. Kredit gambar : Jon Lomberg / Gemini Observatory
Bintang katai cokelat pertama kali dideteksi pada tahun 1995, dan sejak itu objek bintang yang satu ini semakin umum ditemukan, sama seringnya dengan penemuan planet raksasa. Tapi, tetap ada perbedaan di antara keduanya. Sebagai contoh, di atmosfer katai cokelat ditemukan awan debu dan aerosol, juga sejumlah besar metana, sama seperti yang ditemukan di atmosfer Jupiter dan Saturnus. Namun, di antara katai cokelat dan planet raksasa, terdapat dua perbedaan besar. Di atmosfer katai cokelat, air akan selalu berada dalam kondisi gas, sedangkan di planet raksasa, air justru berkondensasi menjadi air es. Perbedaan lainnya, amonia tidak pernah terdeteksi di katai cokelat, sedangkan pada planet gas raksasa, amonia merupakan salah satu komponen utama di atmosfernya.
Pada penemuan CFBDS0059, tampaknya si bintang dingin ini justru lebih mirip planet raksasa dibanding katai cokelat. Mengapa? Karena ternyata di atmosfer CFBDS0059 terdapat amonia, dan juga karena temperaturnya yang rendah.
Sampai saat ini. terdapat dua kelas bintang katai cokelat yang telah diketahui. Yang pertama adalah kelas katai L dengan temperatur 1200-2000°C, memiliki awan debu dan aerosol pada amosfernya. Kelas kedua adalah katai T yang temperaturnya lebih rendah dari 1200 derajat Celcius. Kelas katai T memiliki spektrum yang berbeda karena terjadi pembentukan metana di atmosfernya. Dengan demikian, keberadaan katai cokelat CFBDS0059 yang berbeda dari kedua kelas tersebut akan menjadi prototipe kelas yang baru, yakni katai Y. Kelas katai Y inilah yang akan mengisi gap yang ada di antara planet raksasa dan bintang panas yang temperaturnya kurang dari 100 derajat Celcius.
Gambar katai coklat CFBDS0059 ( titik merah kecil pada gambar) dan grafik spektrum pada panjang gelombang dekat-inframerah. Kurva paling bawah menunjukan keberadaan amonia. Kredit Gambar : A&A
Tidak hanya itu, penemuan bintang katai cokelat paling dingin ini juga memberi implikasi penting dalam dunia extrasolar planet. Karena ternyata, atmosfer bintang CFBDS0059 memiliki kemiripan dengan planet raksasa, sehingga model yang sama bisa digunakan untuk mengetahui kondisi fisik exoplanet. Tapi, pemodelan ini masih harus dibuktikan melalui pengamatan, yang sayangnya akan sangat sulit dilakukan. Pengamatan atmosfer planet extrasolar masih sulit dilakukan karena cahaya exoplanet terlingkupi cahaya bintang induknya yang sangat terang. Hal ini berbeda dengan bintang katai cokelat yang merupakan objek terisolasi, sehingga jauh lebih mudah mengamati katai cokelat. Karena itu, mencari katai cokelat yang temperaturnya mendekati temperatur planet raksasa akan sangat membantu dalam menguji model atmosfer planet extrasolar.
Sumber : A&A press release

Minggu, 07 Agustus 2011

NASA Umumkan Penemuan Planet Alien

NASA Umumkan Penemuan Planet AlienBerita Terbaru, Setelah sebelumnya NASA menemukan sebuah planet alien atau ekstra surya terbaru hasil misi pesawat antariksa Kepler, akhirnya NASA mengumumkan penemuannya pada Rabu (2/2/2011), yang disebut exoplanet karena memiliki orbit bintang daripada matahari. Pengumuman dilakukan dalam sebuah briefing pada pukul 13.00 waktu setempat atau 3 Februari pukul 01.00 WIB. Dalam briefing tersebut hanya membahas mengenai temuan planet ekstra surya terbaru itu.
Pengumuman resmi di situs NASA mengungkapkan, “Data yang di-release akan memperbarui jumlah kandidat planet. Data berdasarkan observasi yang dilakukan antara tanggal 2 Mei – 17 Sepetember 2009.” Pertemuan akan mengikuti jadwal yang telah dirilis hari ini.
Hadir dalam pertemuan itu, pihak yang terkait misi Kepler. Diantaranya Douglas Hudgins dari Kepler Program Sceintist NASA, William Borucki dan Jack Lissauer yang menjadi investigator misi Kepler di Ames Research Center NASA serta Debra Fischer, professor astronomi dari Yale University. Seperti yang dikutip Tribunnews sebelumnya dari CNN, Selasa (11/1/2011), sebuah pesawat ulang-alik NASA berhasil mendeteksi sebuah planet berbatu-batu dan merupakan planet terkecil yang pernah ditemukan di luar sistem tata surya.
Planet yang disebut exoplanet, karena memiliki orbit bintang ketimbang matahari, disebut Kepler-10b. Memiliki ukuran 1,4 ukuran diameter bumi dan berhasil dikonformasi setelah data dikumpulkan selama delapan bulan. Planet bebatuan yang mirip bumi pertama kali ditemukan oleh Kepler.
“Seluruh kemampuan Kepler berhasil dikonvergensi menjadi sebuah bukti yang solida dari planet berbatu yang menggunakan orbit bintang ketimbang mengorbit di sistem tata surya,” demikian dikatakan Natalie Batalha, kepala sains dari dari misi NASA. Ukuran Kepler 10b dan juga komposisi berbatu lebih mirip bintang ketimbang planet bergas yang memiliki air dan sangat jauh dari bentuk bintang. Demikian keterangan disampaikan NASA. Meski demikian, NASA mengatakan jika model planet ini sangat kecil untuk disebut bintang karena ukurannya 20 kali lebih kecil ketimbang Mercury. Bintang Kepler -10b memiliki jarak 560 tahun perjalanan cahaya ke bumi.

Sabtu, 06 Agustus 2011

First Direct Observation of a Planet-Like Object Orbiting Star Similar to Sun

ScienceDaily (Agust. 6, 2011) — An international team of scientists that includes an astronomer from Princeton University has made the first direct observation of a planet-like object orbiting a star similar to the sun.
The finding marks the first discovery made with the world's newest planet-hunting instrument on the Hawaii-based Subaru Telescope and is the first fruit of a novel research collaboration announced by the University in January.
The object, known as GJ 758 B, could be either a large planet or a "failed star," also known as a brown dwarf. The faint companion to the sun-like star GJ 758 is estimated to be 10 to 40 times as massive as Jupiter and is a "near neighbor" in our Milky Way galaxy, hovering a mere 300 trillion miles from Earth.
"It's a groundbreaking find because one of the current goals of astronomy is to directly detect planet-like objects around stars like our sun," said Michael McElwain, a postdoctoral research fellow in Princeton's Department of Astrophysical Sciences who was part of the team that made the discovery. "It is also an important verification that the system -- the telescope and its instruments -- is working well."
Images of the object were taken in May and August during early test runs of the new observation equipment. The team has members from Princeton, the University of Hawaii, the University of Toronto, the Max Planck Institute for Astronomy (MPIA) in Heidelberg, Germany, and the National Astronomical Observatory of Japan (NAOJ) in Tokyo. The results will be published in the Astrophysical Journal Letters.
"This challenging but beautiful detection of a very low mass companion to a sun-like star reminds us again how little we truly know about the census of gas giant planets and brown dwarfs around nearby stars," said Alan Boss, an astronomer at the Carnegie Institution for Science in Washington, D.C., who was not involved in the research. "Observations like this will enable theorists to begin to make sense of how this hitherto unseen population of bodies was able to form and evolve."
Brown dwarfs are stars that are not massive enough to sustain fusion reactions at their core, so they burn out and cool off as they age.
Aided by new varieties of viewing techniques, scientists started finding extrasolar planets (planets beyond the solar system) in 1992 and have located more than 400 planet-like objects so far. Most, however, have not been directly observed, but inferred from viewing the star around which the planet orbits. GJ 758 B is one of the first planet-like objects to be directly seen. Of the others that have been directly viewed, most have been on larger orbits than the distance between GJ 758 B and its star, or around stars with temperatures far above the average temperature of GJ 758 or our sun.
Scientists were able to spot the object even though it was hidden in the glare of the star it orbits by subtracting out that brighter light. To do this, they used the High Contrast Coronagraphic Imager with Adaptive Optics that has been attached to the Subaru Telescope. Also known as HiCIAO, it is part of a new generation of instruments specially made to detect faint objects near a bright star by masking its far more intense light. They also employed a technique known as angular differential imaging to capture the images.
"It's amazing how quickly this instrument has come online and burst into the forefront," said Marc Kuchner, an exoplanet scientist at the NASA Goddard Space Flight Center in Greenbelt, Md., who was not involved in the work. "I think this is just the beginning of what HiCIAO is going to do for the field." He added that the discovery also emphasizes that this new method of finding exoplanets -- direct detection -- is "really hitting its stride."
The planet-like object is currently at least 29 times as far from its star as the Earth is from the sun, approximately as far as Neptune is from the sun. However, further observations will be required to determine the actual size and shape of its orbit. At a temperature of only 600 F, the object is relatively "cold" for a body of its size. It is the coldest companion to a sun-like star ever recorded in an image.
The fact that such a large planet-like object appears to orbit at this location defies traditional thinking on planet formation. It is thought most larger planets are formed either closer to or farther from stars, but not in the location where GJ 758 is now. Discoveries such as this one could help theorists refine their ideas.
Telescope images also revealed a second companion to the star, which the scientists have called GJ 758 C. More observations, however, are needed to confirm whether it is nearby or just looks that way. "It looks very promising," said Christian Thalmann, one of the team's lead scientists. If it should turn out to be a second companion, he said, that would make both B and C more likely to be young planets rather than old brown dwarfs, since two brown dwarfs in such close proximity would not remain stable for such a long period of time.
Researchers from Princeton and NAOJ announced an agreement on Jan. 15 to collaborate over the next 10 years, using new equipment on the Subaru Telescope to peer into hidden corners of the nearby universe and ferret out secrets from its distant past. This research is a part of that collaboration. The HiCIAO team is led by Professor Motohide Tamura of NAOJ.
The partnership, called the NAOJ-Princeton Astrophysics Collaboration or N-PAC, provides for the exchange of scientific resources and supports a variety of long-term research projects in which the scientists from both Princeton and the Japanese astronomical community will participate on an equal basis. The collaboration builds on a decades-long tradition of scientific collaboration between Japanese and Princeton astronomers in a wide range of astronomical fields.
An important part of that partnership is the search for planets, previously hidden by the glare of stars. Finding these planets is a crucial step in answering the age-old question of the existence of extraterrestrial life.

Jumat, 05 Agustus 2011

Penemuan Matahari Baru

Berita Terbaru, Astronom NASA untuk pertama kalinya menemukan planet yang mirip dengan Matahari. Benarkah ada 2 matahari dalam tata surya kita? Memang bintang itu bersinar berwarna kekuning-kuningan namun tidak seterang matahari dan tidak besar seperti matahari melainkan hanyalah bintang katai merah kecil. Bintang katai itu lebih redup dan lebih dingin. Astronomi mengklarifikasi tentang penemuan planet baru yang mirip dengan matahari itu. Mereka menjelaskan bahwa nama planet baru itu adalah planet Gliese 581. Kehadiran Gliese 581 ini disertai dengan penemuan planet yang mengitari Gliese 581. Planet yang disebut-sebut exoplanet ini memiliki kesamaan hampir mirip dengan bumi hanya ukurannya memiliki besar 2 kali lipat dari bumi. Exoplanet itu memiliki suhu yang cocok bagi makhluk hidup yang berkisar antara 0-40 derajat dan air di planet itu masih berbentuk cairan tidak membeku dan sebagian wilayah masih berbentuk batuan jadi planet ini disinyalir planet layak huni manusia. Penemuan ini akan terus dikembangkan oleh para peneliti. Jika memang bisa dijadikan layak huni manusia, planet itu akan dijadikan tempat ruang angkasa.
Penemuan Matahari Baru
Penemuan baru-baru ini telah ditemukan yang disebut-sebut sebagai matahari tersebut. Penemuan ini dilihat langsung oleh teleskop Herschel milik Badan Luar Angkasa Eropa (ESA) yang baru diluncurkan tanggal 14 mei 2010 kemarin. Teleskop ini mampu menangkap gelombang-gelombang yang tak bisa dilihta oleh teleskop lain. Calon bintang raksasa ini disinyalir memiliki panas yang lebih daripada matahari. Saat ini bintang itu masih berbentuk embrio dan diperkirakan akan tumbuh terus menjadi bintang raksasa yang pernah ada di galaksi Bima Sakti pada ribuan tahun mendatang. Pertumbuhan bintang ini sebagai ilmu untuk penelitian tentang proses terjadinya bintang dengan menggunakan teleskop herschel.
“Ini merupakan bintang besar yang menciptakan elemen berat seperti besi dan elemen-elemen tersebut akan berada di ruang antar bintang. Dan karena bintang-bintang besar mengakhiri hidup mereka dengan ledakan supernova, mereka juga menyuntikkan energi besar ke galaksi,” ungkap ilmuwan teleskop herschel.